











www.bundesnetzagentur.de

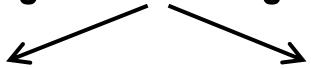
# Das Gasnetz als universeller Speicher – Chancen und Grenzen

1. Energiespeichertagung Umwelt-Campus Birkenfeld

Dr. Gerrit Volk,

Referatsleiter "Zugang zu Gasverteilernetzen, technische Grundsatzfragen, Versorgungssicherheit" Birkenfeld, 27. Februar 2013












# Energiestrukturausgleich



## Energiespeicher

- Erdgas, Biogas, Wasserstoff, synthetisches Methan unter Nutzung der Gasinfrastruktur
- Wärmespeicher
- Pumpspeicherwerke
- Druckluftspeicher
- Batterien

Lastmanagement



## Erzeugung / Verbrauch

- Erzeugungsmanagement
   (→ Einspeisung,
   Reservekraftwerke,
   Kapazitätsmärkte)
- Verbrauchsmanagement (→ Bsp.: Abschaltbare © Bundesnetzagentur Verträge)

## Netzsteuerung

- Netzsteuerung
  - (→ Bsp.: Lastflusszusagen)











# Energiestrukturausgleich: Wissensfelder







**Technisches Wissen** 

Kaufmännisches Wissen

Regulatorisches Wissen

- -Untergrundspeicher
- -Biogas
- -Power to Gas
- -Wärmespeicher
- -Pumpspeicher
- -Batterien

- -Energiebilanzierung
- -Bilanzkreismanagement
- -Mehr- und Mindermengen
- -Wirtschaftlichkeitsvergleiche
- etc.

- -EnWG
- -EEG
- -KWKG
- -GasNZV/GasNEV
- etc.











## Erdgasinfrastruktur als Energiespeicher

## Biogas und Synthetisches Methan –

| Speichertyp                       | Potential      | Reichweite     |
|-----------------------------------|----------------|----------------|
| Pumpspeicherwerke                 | ca. 0,04 TWhel | ca. 30 Minuten |
| 45 Mio. Elektrofahrzeuge á 10 kWh | ca. 0,45 TWhel | 6 Stunden      |
| 5 % Wasserstoff im Erdgasnetz     | ca. 1,80 TWhel | ca. 1 Tag      |
| 10 % Wasserstoff im Erdgasnetz    | ca. 3,60 TWhel | ca. 2 Tage     |
| Synthetisches Methan              | ca. 120 TWhel  | gut 2 Monate   |













- Umwandlung von Strom in Wasserstoff durch Wasserelektrolyse
- Methanisierung des Wasserstoffs
- Einspeisung in die Erdgasinfrastruktur
- Verwendungspfadoffene Nutzung des Gases













Leistungslänge des deutschen Stromnetzes:

■ Höchstspannung: 34.749 km

Hochspannung: 95.154 km

Mittelspannung: 497.044 km

Niederspannung: 1.123.898 km

- Ausbausbedarf gem. EnLAG: 24 Projekte
- Davon bereits umgesetzt (Stand September 2011):
  - Insgesamt 214 von 1807 km gebaut
  - Zwei Projekte vollständig fertig (Trassenlänge je <10 km)</li>



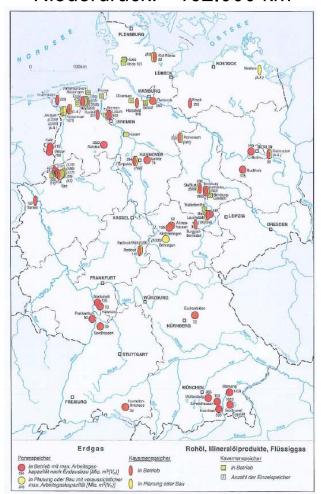


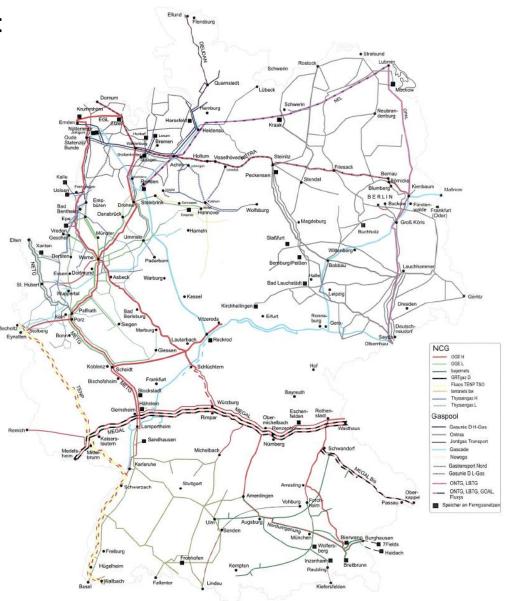









#### Das deutsche Gasfernleitungsnetz


Leistungslänge des deutschen Gasnetzes:

Hochdruck: 114.000 km

Mitteldruck: 248.000 km

Niederdruck: 162.000 km



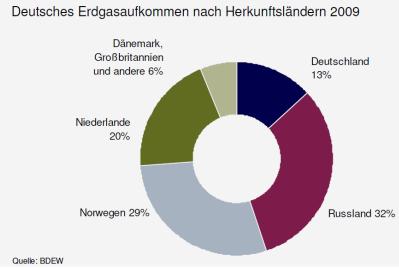


#### Probleme und Chancen











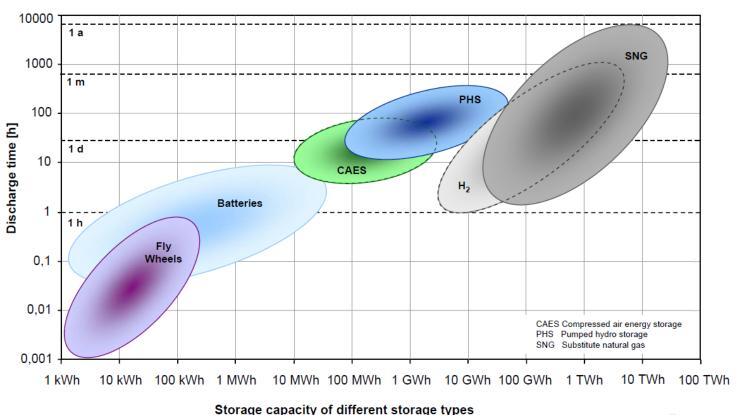



- Gasspeichervolumen deckt ca. 25% des deutschen Gasverbrauchs
- Gasinfrastruktur
  - ■in hervorragendem technischem Wartungszustand
  - europäisch eng vermascht
  - beeinträchtigt weder das Landschaftsbild noch die Lebensqualität
- Gasverbrauch stagnierend bis rückläufig
- Gasaufkommen zunehmend importabhängig (Russland, Norwegen, Niederlande)
















### Übersicht über Kapazität verschiedener Speichertypen



- Schwungräder, Batterien, Druckluftspeicher und Pumpspeicherwerke mit stark begrenzter Reichweite, aber schneller Entladezeit
- Batterien: Annahme eines Bestandes von 45 Mio. Elektro-Kfz mit je 10 kWh<sub>el</sub>
- $\rightarrow$  0,45 TWh<sub>el</sub>



- Speichervolumen insgesamt zu gering
- Kurz- und Mittelfristspeicher existieren, können kurzfristige Schwankungen ausgleichen
- Langfristspeicher zur Überbrückung von längeren "Windflauten" fehlen noch
- Lösung: Einsatz des Gasnetzes als Langfristspeicher











# "Ein Kubikmeter Erdgas (0,7 kg) enthält in etwa die gleiche Energie wie ein Kubikmeter Wasser (1000 kg), der 4000 m hochgehoben wird"

$$E_{pot}$$
 = m \* g \* h  
= 1000 kg \* 9,81 m/s<sup>2</sup> \* 4000 m  
= 9810 N \* 4000 m  
= 39.240.000 Nm  
= 39.240.000 J

(Antoni, Oliver; Birkner, Peter: "Fragen zur Power to Gas – Technologie", gwf-Gas|Erdgas, Januar/Februar 2013, S. 60ff., 62.)

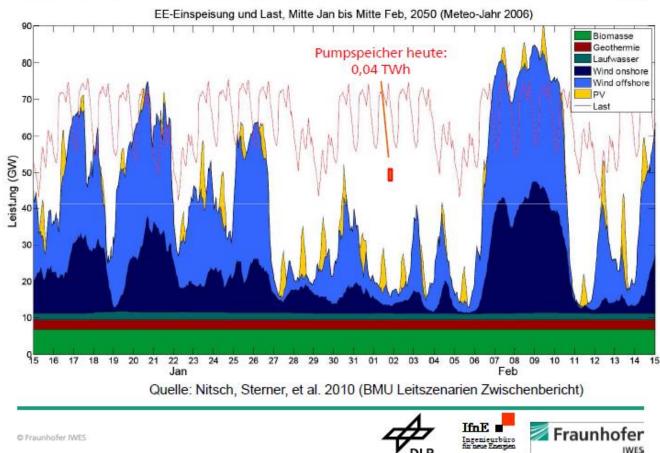
## Umrechnung in kWh:

39.240 kWs

$$39.240/3600 \text{ kWh} =$$












#### Speicherbedarf im Jahr 2050

#### Speicherbedarf: Leitszenarien - Basisszenario 2050 – 85% EE – ca. 30 TWh<sub>el</sub>



- Weiße Fläche zeigt den Speicherbedarf
- Roter Fleck: Speichervolumen aller deutschen Pumpspeicher
- Langzeitspeicher werden benötigt

heute vorhandene Speichertechnologien reichen nicht aus, um fluktuierende Erneuerbare Energien auszugleichen













- Bei Windaufkommen Stromproduktion aus Windkraft
- Bei Windstille Stromproduktion aus Biogas
- Minutenscharfe nachfragegesteuerte
   Stromproduktion mittels Gaskraftwerk
- Vorhandene Erdgasinfrastruktur als Energiespeicher
- 100% regenerative Stromerzeugung
- CO<sub>2</sub>-neutral

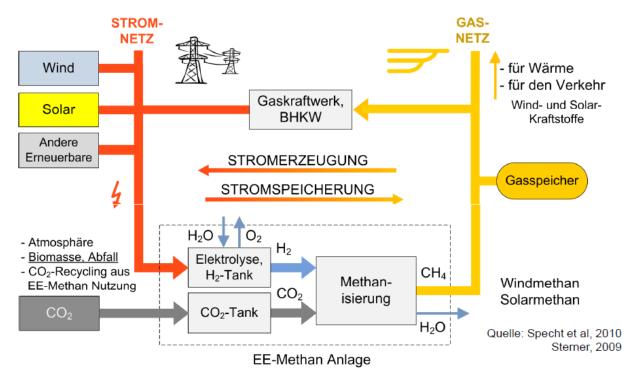


Foto: DVGW



Quelle: www.kombikraftwerk.de












#### Modell eines integrierten Gas- und Stromnetzes



→ CO<sub>2</sub>-neutraler Energieträger, CO<sub>2</sub>-neutrale Energiespeicherung

© Fraunhofer IWES

- Nutzung des Gasnetzes als Speicher für EE-Strom
- Elektrolyse, Einspeisung von H<sub>2</sub> in das Erdgasnetz (im Rahmen der Grenzen des DVGW-Regelwerks)
- Methanisierung des H<sub>2</sub> unter Verwendung von CO<sub>2</sub>
- Einspeisung des erzeugten
   CH<sub>4</sub> in das Gasnetz (ohne Einschränkung)
  - Einsatz im Wärmemarkt, im Mobilitätssektor oder Rückverstromung

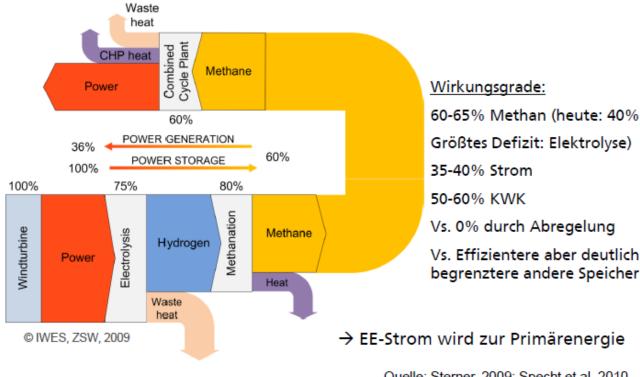


- Durch Einspeisung von Wasserstoff und synthetisch erzeugtem Methan lässt sich die vorhandene Infrastruktur des Erdgasnetzes als Strom- bzw. Energiespeicher nutzen!
- Speicherpotential Gasnetz: ca. 130 TWhete entspricht ca. dem Verbrauch von 2 Monaten












#### Weiterverarbeitung von EE-Wasserstoff: Methanisierung

#### Erneuerbares Methan – Strom-zu-Gas

Wirkungsgrade, Kapazitäten, Kosten (1)



- Wirkungsgrad der Elektrolyse liegt bei ca. 80%
- Methanisierung verringert Wirkungsgrad auf ca. 60%
- Nutzungspfad des Methans offen
- Vermarktung als EE-Methan

Quelle: Sterner, 2009; Specht et al. 2010



Fraunhofer IWES

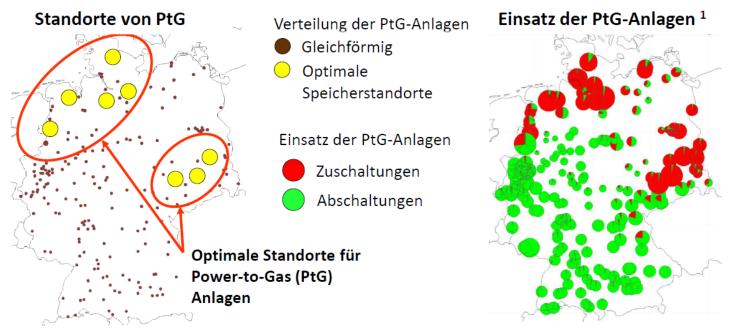
- Wirkungsgrad Strom → Gas → Strom relativ schlecht (ca. 36%)
- Alternative wäre Abschaltung der EE-Anlage → Wirkungsgrad 0%












#### Identifikation von geeigneten Standorten für Power-to-Gas



#### Schritt 1:

Verteilung der Anlagen an variablen Standorten und Simulation des Übertragungsnetzes



#### Schritt 2:

Optimale Positionierung von Speichern unter Berücksichtigung des Übertragungsnetzes

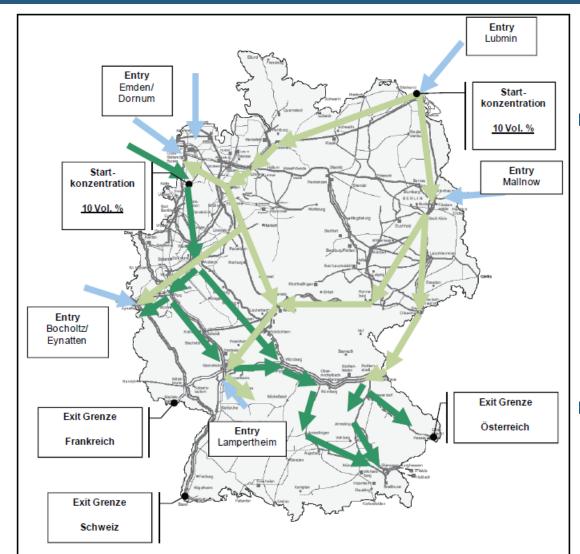


<sup>1</sup> Anmerkung: Einsatz der Anlagen im kurativen Engpassmanagement (Redispatch) des Übertragungsnetzbetreibers



Quelle: Breuer, IAEW
















 Wege des Wasserstoffs von verschiedenen
 Einspeisepunkten durch das deutsche Gasnetz

Hellgrün: Ostsee

Dunkelgrün: Nordsee

Hellblau: Entrypunkte

 Auch im Süden teilw. noch 30 Prozent des ursprünglich eingespeisten Wasserstoffs nachweisbar

Quelle: Netzentwicklungsplan Gas 2012 der Fernleitungsnetzbetreiber © Bundesnetzagentungsnetzbetreiber











- Bisherige Maßnahmen zur Förderung der Power to Gas-Technologie
  - Gewährung des Zugangs zum Gasnetz durch Erweiterung der
     Gasdefinition (§ 3 Nr. 19a EnWG) bzw. der Biogasdefinition (§ 3 Nr. 10c EnWG)
  - Befreiung der Elektrolyse von der Stromsteuer auf Antrag (§ 9a Abs. 1 StromStG)
  - Befreiung von Gasnetzentgelten (§ 118 Abs. 6 S. 8 EnWG)
  - Befreiung von Stromnetzentgelten für 20 Jahre (§ 118 Abs. 6 S. 1 EnWG)
  - Pauschales Entgelt für vermiedene Netzkosten in Höhe von 0,007 Euro je kWh für zehn Jahre (§ 20a GasNEV)
- In der Diskussion
  - Befreiung von der EEG-Umlage für Speichergas (§ 37 Abs. 4 EEG-E)











#### Das Speicherförderprogramm der Bundesregierung

- Gemeinsame Förderinitiative "Energiespeicher" von BMWi, BMU und BMBF
- Ressortübergreifendes Speicherforschungsprogramm und Förderung von Demonstrationsanlagen über 200 Mio. Euro
- 1. Leuchtturm "Wind-Wasserstoff-Kopplung"
  - Projektgruppe "ekolyser", Verbesserung Komponenten für PEM-Elektrolyse
  - Projekt "LastElSys", Ertüchtigung von PEM-Elektrolyseuren für Lastwechsel
  - Projekt der TU Berlin, Entwicklung preisgünstiger Katalysatoren
- 2. Leuchtturm "Batterien in Verteilnetzen"
  - Erzeugungsnahe Speicherung von insbesondere PV-Strom
  - Verbesserung des Netzbetriebes

#### Offene Fragen











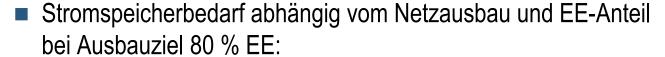
- Wer soll die Power to Gas Anlage betreiben?
  - Gas- und / oder Stromnetzbetreiber?
  - Gas- und / oder Stromhändler?
  - Kraftwerks- und / oder EE-Anlagenbetreiber?
  - Dienstleister / Arbitrageure?
  - Erzeuger?



- Gasnetz?
- Stromnetz?
- Stromhandel?
- Und wer soll dafür bezahlen?
  - → Nach derzeitigem Stand der Gasnetzkunde
- Speicher optimieren sich am Markt und dienen nicht zwangsläufig dem Netz!














- Bedarfsgerechter Netzausbau ist unabdingbar für
  - die Integration Erneuerbarer Energien
  - den freien Stromhandel im europäischen Binnenmarkt



- bis 2020: 18 TWhel Speicherbedarf (BEE-Branchenprognose)
- bis 2050: 30 TWhel Speicherbedarf (IWES-Prognose)
- Langfrist-Speicherung kann Netzausbau zur Integration von EE ergänzen
- Power to Gas kann Netzausbau <u>nicht</u> ersetzen













#### Einschätzung zu Power to Gas

- Öffnung des Netzes für Power-to-Gas ist erfreulich und ein richtiges Signal
- Schritt hin zur Konvergenz der Netze:
  - Speicherdienstleistung für die Stromnetze
  - mögliche Verringerung des Stromnetzausbaubedarfes
  - Fluktuationsausgleich



- Bisher aber lediglich Platzhalter in den Netzentwicklungsplänen
  - Strom: Exkurs, technische Erläuterungen, aber keine "echte" Berücksichtigung
  - Gas: zukünftig weitergehende Betrachtungen, insbesondere Methanisierung
- Rahmenbedingungen zur Einspeisung ins Gasnetz sind geschaffen
- → Markt ist gefordert, die Möglichkeiten zu nutzen und passende Geschäftsmodelle zu entwickeln © Bundesnetzagentur













#### Vielen Dank für Ihre Aufmerksamkeit!

Dr. Gerrit Volk

Referatsleiter Zugang zu Gasverteilernetzen, Technische Grundsatzfragen, Versorgungsqualität

Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen

Tulpenfeld 4

53113 Bonn

+49 (0) 228 14-5820 Tel.: Fax: +49 (0) 228 14-5958 gerrit.volk@bnetza.de E-Mail: